规格 | 价格 | 库存 | 数量 |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
Other Sizes |
|
靶点 |
NMDA Receptor
|
---|---|
体外研究 (In Vitro) |
在 HEK 细胞中,(-)-Dizocilpinemaleate ((-)-MK-801maleate) 以剂量依赖性方式显着减少所有三种单胺转运蛋白(多巴胺、血清素和去甲肾上腺素)的摄取。 (-)-Dizocilpine 在去甲肾上腺素、多巴胺和血清素转运蛋白上的 Ki 值分别为 3.7 μM、40 μM 和 47 μM[2]。
已知(+)-MK-801是N-甲基-D-天冬氨酸(NMDA)受体的特异性非竞争性拮抗剂。然而,除了具有抗惊厥作用外,该化合物还具有中枢拟交感神经作用和抗焦虑样作用,这增加了(+)-MK-801可能影响单胺摄取系统的可能性。为了阐明这种可能性,我们研究了(+)-MK-801对HEK细胞中表达的单胺转运蛋白的影响。(+)-MK-801以剂量依赖的方式显著抑制了所有三种单胺转运蛋白的摄取,并且这种抑制作用与单胺具有竞争性。(+)-MK-801对去甲肾上腺素、多巴胺和血清素转运体的Ki值分别为3.2微M、40微M和43微M。此外,NMDA受体较弱的拮抗剂(-)-MK-801也抑制单胺转运体,其效力与(+)-MK-8001相似。这些结果清楚地表明,MK-801是NMDA受体的非竞争性拮抗剂,在没有立体选择性的情况下竞争性抑制单胺转运体[2]。 化合物MK-801[(+)-5-甲基-10,11-二氢-5H-二苯并[a,d]环庚烯-5,10-亚胺马来酸酯]是一种强效抗惊厥药,口服后具有活性,其作用机制尚不清楚。我们在大鼠脑膜中检测到[3H]MK-801的高亲和力(Kd=37.2+/-2.7 nM)结合位点。这些位点是热不稳定的、立体选择性的和区域特异性的,海马体的位点密度最高,其次是大脑皮层、纹状体和脑桥髓质。小脑中未检测到结合。MK-801结合位点表现出一种新的药理学特征,因为这些位点上没有一种主要的神经递质候选物是活性的。唯一能够竞争[3H]MK-801结合位点的化合物是已知能够阻断N-甲基-D-天冬氨酸(N-Me-D-Asp)受体亚型介导的兴奋性氨基酸反应的物质。这些药物包括游离麻醉剂苯环利定和氯胺酮以及西格玛型阿片类药物N-烯丙基甲氧基丙胺(SKF 10047)。使用大鼠皮质切片制备的体外神经生理学研究表明,MK-801对N-Me-D-Asp的去极化反应具有强效、选择性和非竞争性拮抗作用,但对红藻氨酸或奎司琼酸盐没有。苯环利定、氯胺酮、SKF 10047和MK-801作为N-Me-D-Asp拮抗剂的效力与其作为[3H]MK-801结合抑制剂的效力密切相关(r=0.99)。这表明MK-801结合位点与N-Me-D-Asp受体有关,并解释了MK-801作为抗惊厥药的作用机制[3]。 |
体内研究 (In Vivo) |
在社交失败压力模型中,(-)-马来酸地佐环平(0.1 mg/kg;腹腔注射;雄性成年 C57BL/6 小鼠)治疗可产生快速的抗抑郁作用[1]。
在动物模型中,马来酸地佐环平可用于创建精神分裂症模型。最近的研究表明,与药物有关的记忆在暴露于环境线索后会被重新激活,并可能经历重新巩固,这一过程可以增强记忆。相反,某些药物可能会破坏再巩固,从而削弱与药物相关的记忆。几项研究已经证明,使用药物诱导的条件性位置偏好(CPP)任务会破坏记忆的再巩固,但没有研究探讨在可卡因预充注射后,可卡因相关的记忆是否会在可卡因自我给药动物中受到类似的破坏,这会有力地恢复药物寻求行为。在这里,我们使用可卡因诱导的CPP和可卡因自我给药来研究在重新激活之前给予N-甲基-D-天冬氨酸受体拮抗剂(+)-5-甲基-10,11-二氢-5H-二苯并[a,D]环庚烯-5,10-马来酸亚胺(MK-801)是否会抑制随后可卡因引发的恢复(破坏再巩固)。在CPP背景下可卡因相关记忆重新激活之前,在大鼠体内全身注射MK-801(腹腔注射0.05或0.20mg/kg)会减弱随后可卡因引发的恢复,而在CPP环境中未接受重新激活的大鼠则不会出现中断。然而,在接受过自我给药可卡因训练的大鼠中,在两种不同类型的再激活过程之前全身给药MK-801对随后可卡因引发的杠杆按压行为的恢复没有影响。因此,MK-801的系统给药破坏了可卡因相关记忆对CPP的再巩固,但对自我给药没有影响。这些发现表明,可卡因CPP和自我给药不会使用类似的神经化学过程来破坏再巩固,或者自我给药大鼠的可卡因相关记忆不会经历再巩固,这是通过可卡因恢复条件下的杠杆按压行为来评估的[5]。 研究了单独吗啡(MOR:10和20mg/kg,皮下注射)、单独MK-801(地佐西平:0.03、0.1、0.3和1mg/kg,腹腔注射)以及MOR与MK-801的组合对小鼠行走的影响。MK-801在0.3和1mg/kg时,但在0.03和0.1mg/kg时没有显著增加小鼠的行走能力。尽管反复给药MK-801(0.3和1mg/kg)的小鼠在个体剂量的步行增加效应中分别表现出增强和减弱,但它们对MOR(10mg/kg)的挑战表现出明显高于生理盐水处理的小鼠的敏感性。MOR(10和20mg/kg)的重复给药诱导了步行增加效果的逐渐增强。反复给予MOR(10mg/kg)的小鼠对MK-801(0.03-0.3mg/kg)的敏感性显著增加。MOR与MK-801的联合用药增强了步行增加的效果,重复联合用药诱导了效果的逐渐增强,但MOR(10或20 mg/kg)与MK-802(1 mg/kg)的联合用药除外。然而,除了MOR(20mg/kg)与MK-801(1mg/kg)联合使用的情况外,任何剂量的MK-801都不会改变MOR致敏的诱导,MK-801具有高毒性(即引发死亡或垂死状态)。另一方面,同时用SCH 23390(0.05 mg/kg,皮下注射)或尼莫地平(0.05 mg/kg)治疗,或用利血平(1 mg/kg,皮下移植)预处理4小时,用α-甲基对酪氨酸(200 mg/kg,腹腔注射)预处理6小时,部分降低了MOR(10 mg/kg)和MK-801(0.3 mg/kg)的步行增加作用。纳洛酮(1mg/kg,皮下注射)同时治疗选择性地降低了MOR的效果。然而,同时用阿扑吗啡(0.1mg/kg,皮下注射)治疗并没有改变任何一种药物的效果。这些结果表明,MOR和MK-801的步行增加作用的特征彼此相似,MK-801重复治疗可诱导对MOR的交叉致敏,反之亦然[6]。 |
细胞实验 |
已知(+)-MK-801是N-甲基-D-天冬氨酸(NMDA)受体的特异性非竞争性拮抗剂。然而,除了具有抗惊厥作用外,该化合物还具有中枢拟交感神经作用和抗焦虑样作用,这增加了(+)-MK-801可能影响单胺摄取系统的可能性。为了阐明这种可能性,我们研究了(+)-MK-801对HEK细胞中表达的单胺转运蛋白的影响。(+)-MK-801以剂量依赖的方式显著抑制了所有三种单胺转运蛋白的摄取,并且这种抑制作用与单胺具有竞争性。(+)-MK-801对去甲肾上腺素、多巴胺和血清素转运体的Ki值分别为3.2微M、40微M和43微M。此外,NMDA受体较弱的拮抗剂(-)-MK-801也抑制单胺转运体,其效力与(+)-MK-8001相似。这些结果清楚地表明,MK-801是NMDA受体的非竞争性拮抗剂,在没有立体选择性的情况下竞争性抑制单胺转运体。[2]
|
动物实验 |
Animal/Disease Models: Male adult C57BL/6 mice ( 20-25g ; aged 8 weeks) with social defeat stress model[1]
Doses: 0.1 mg/kg Route of Administration: intraperitoneal (ip)injection Experimental Results: Induced rapid antidepressant effects in the social defeat stress model. Systemic injection of Dizocilpine/MK-801 (0.05 or 0.20 mg/kg administered intraperitoneally) in rats just prior to reactivation of the cocaine-associated memory in the CPP context attenuated subsequent cocaine-primed reinstatement, while no disruption occurred in rats that did not receive reactivation in the CPP context. However, in rats trained to self-administer cocaine, systemic administration of MK-801 just prior to either of two different types of reactivation sessions had no effect on subsequent cocaine-primed reinstatement of lever-pressing behavior. Thus, systemic administration of MK-801 disrupted the reconsolidation of a cocaine-associated memory for CPP but not for self-administration. These findings suggest that cocaine-CPP and self-administration do not use similar neurochemical processes to disrupt reconsolidation or that cocaine-associated memories in self-administering rats do not undergo reconsolidation, as assessed by lever-pressing behavior under cocaine reinstatement conditions.[5] Subjects [5] Male Sprague-Dawley and Long-Evans Hooded rats weighing 280–350 g at the start of the experiment were housed in a temperature- and humidity-controlled colony room with a 12-h light/dark cycle (lights on at 6:00 a.m.). Sprague-Dawley rats were used for all CPP studies, and our initial self-administration studies used Long-Evans rats because of their higher general activity levels and thus higher initial lever pressing during acquisition of the self-administration task. However, to ensure that there were no strain differences in the effects of Dizocilpine/MK-801 on self-administration behavior, we also used Sprague-Dawley rats to test the effects of the highest dose of MK-801 compared with Saline vehicle in this strain. No significant differences were found for the effects of MK-801, so the data from both strains were pooled. Animals undergoing self-administration were housed in a 12-h reverse light/dark cycle (lights on at 6:00 p.m.). Experiments were conducted according to the National Institutes of Health Guide for the Care and Use of Laboratory Animals, and experimental protocols were approved by the University Animal Care and Use Committee. Animals were housed two per cage for the CPP studies and individually for the self-administration studies. Food and water were provided ad libitum except for when animals were engaged in experiments. Drug administration [5] Dizocilpine(+)-MK-801 hydrogen maleate was dissolved in sterile saline for i.p. injection (1 mL/kg). The doses chosen were 0.05 and 0.20 mg/kg, based on previous work by Przybyslawski and Sara (1997). Surgery [5] Self-administration surgery was conducted according to a modification of McFarland and Kalivas (2001). Rats were anesthetized with zyket (ketamine 87 mg/kg + xylazine 13 mg/kg) given intramuscularly prior to implanting a chronic indwelling i.v. catheter. The catheter was surgically implanted into the right jugular vein, and the distal end was led subcutaneously to the back between the scapulas. Catheters were constructed from Silastic tubing (9 cm; inner diameter 0.025 in, outer diameter 0.047 in) connected to a back-mount cannula pedestal, a bent 22-gauge metal cannula encased within a plastic screw connector attached to a polyester mesh (Plastics One). A small ball of silicone sealant was placed ∼2.8 cm from the end of the catheter. The right jugular vein was isolated, the most anterior portion of the vein was tied shut, and a small incision was made. The distal end of the catheter was inserted into the vein until the silicone ball was flush with the vein. The vein was secured by tying suture thread on both sides of the silicone ball; additionally, the thread on both sides was tied together. Immediately after surgery, the catheter was injected with 0.1 mL of locking solution: heparin (500 U/mL), gentamicin (5 mg/mL), and glycerol (60%) in sterile saline. Incisions were sutured, and the animal was given 5–7 d to recover. After surgery, the catheter was flushed daily with 0.1 mL of heparin (10 U/mL) and gentamicin antibiotic (5 mg/mL) in sterile saline to help protect against infection and catheter occlusion. Behavioral procedures [5] CPP [5] All CPP studies were conducted during the same time of day. The proposed studies employed a three-compartment CPP apparatus as previously described (Brown et al. 2007). Briefly, the procedure consisted of a preconditioning preference test, training for 8 d (4 saline pairings alternating with 4 cocaine pairings), testing for CPP acquisition followed by extinction sessions, and cocaine-primed reinstatement with a 10 mg/kg, i.p. dose of cocaine (Brown et al. 2007). Except for the training days, rats had access to all three compartments of the CPP apparatus. In Experiment 1, we tested whether Dizocilpine/MK-801 would impair reconsolidation of the memory for the cocaine-associated context during reinstatement testing. Animals underwent preconditioning, conditioning, testing, and extinction as described above, and on Reactivation Day 1, rats received saline or MK-801 (0.05 mg/kg or 0.20 mg/kg, i.p.) 30 min prior to a cocaine injection (10 mg/kg, i.p.) and placed immediately into the central compartment of the CPP box (Reactivation Day 1). Rats were allowed to explore all three compartments. The next day, the procedure from Reactivation Day 1 was repeated (Reactivation Day 2). This procedure was given for 2 d because our previous studies using a different pharmacological agent (Brown et al. 2007) indicated that one day of memory reactivation was not sufficient to disrupt subsequent cocaine-primed reinstatement. The following day, animals were tested for cocaine-primed reinstatement without any prior injection of either saline or MK-801 before being placed into the CPP box (Reinstatement Day). Rats were allowed to explore all three compartments. Experiment 2 was identical to Experiment 1 with the exception of the cage location where Dizocilpine/MK-801 and cocaine injection took place on Reactivation Days 1 and 2. In Experiment 2, animals were given saline or MK-801 followed by cocaine 30 min later in the home cage instead of in the CPP apparatus for the two days of “reactivation.” This was done to determine whether reactivation of the memory for the cocaine-associated context by cocaine in the CPP context was necessary for the ability of MK-801 to disrupt reconsolidation. Animals underwent preconditioning, conditioning, testing, and extinction as described above but animals were injected with saline or MK-801 (0.20 mg/kg, i.p.) 30 min prior to a cocaine injection (10 mg/kg, i.p.) in the home cage. Animals remained in the home cages, and the next day, the procedure from the first day of reactivation was repeated. The following day, animals were tested for cocaine-primed reinstatement in their CPP box without any prior microinjection of saline or MK-801, exactly as described for the Reinstatement Day in Experiment 1 above. Methods: The antidepressant effects of (+)-MK-801 (0.1mg/kg) and (-)-MK-801 (0.1mg/kg) in the social defeat stress model were examined.[1] Results: In the tail suspension and forced swimming tests, both stereoisomers significantly attenuated increased immobility time in susceptible mice. In the sucrose preference test, (+)-MK-801, but not (-)-MK-801, significantly enhanced reduced sucrose consumption 2 or 4 days after a single dose. However, no antianhedonia effects were detected 7 days after a single dose of either stereoisomer.[1] Conclusions: Both stereoisomers of MK-801 induced rapid antidepressant effects in the social defeat stress model, although neither produced a long-lasting effect (7 days).[1] |
药代性质 (ADME/PK) |
Dizocilpine (MK-801) is a non-competitive NMDA receptor antagonist with high binding affinity, requiring an open channel for receptor blockade. Key pharmacokinetic characteristics include:
1. Bioavailability & Absorption o While specific bioavailability data for dizocilpine is not provided in the sources, its structural analog orphenadrine (an NMDA antagonist with similar properties) demonstrates blood-brain barrier penetration, suggesting dizocilpine may share this trait. 2. Metabolism & Elimination o Studies on reeler mice indicate dizocilpine’s efficacy correlates with GABAergic modulation, implying potential hepatic metabolism involving neurotransmitter pathways. o Comparative pharmacokinetic data from paliperidone derivatives suggest rapid metabolism may occur for certain CNS-targeting drugs, though dizocilpine’s exact metabolic profile remains unspecified. 3. Pharmacodynamic Interactions o Dizocilpine’s NMDA receptor blockade is enhanced in models of synaptic plasticity dysfunction, suggesting context-dependent pharmacokinetic-pharmacodynamic relationships. For precise quantification (e.g., Tmax, half-life), additional data beyond the current search results would be required. |
参考文献 |
|
其他信息 |
Dizocilpine maleate is a maleate salt obtained by reaction of dizocilpine with one equivalent of maleic acid. It has a role as an anaesthetic, an anticonvulsant, a neuroprotective agent, a nicotinic antagonist and a NMDA receptor antagonist. It is a maleate salt and a tetracyclic antidepressant. It contains a dizocilpine(1+).
A potent noncompetitive antagonist of the NMDA receptor (RECEPTORS, N-METHYL-D-ASPARTATE) used mainly as a research tool. The drug has been considered for the wide variety of neurodegenerative conditions or disorders in which NMDA receptors may play an important role. Its use has been primarily limited to animal and tissue experiments because of its psychotropic effects. Background: Current data on antidepressant action of the N-methyl-D-aspartate receptor antagonist, (+)-MK-801, is inconsistent. This study was conducted to examine the effects of (+)-MK-801 and its less potent stereoisomer, (-)-MK-801, in the social defeat stress model of depression. Methods: The antidepressant effects of (+)-MK-801 (0.1mg/kg) and (-)-MK-801 (0.1mg/kg) in the social defeat stress model were examined. Results: In the tail suspension and forced swimming tests, both stereoisomers significantly attenuated increased immobility time in susceptible mice. In the sucrose preference test, (+)-MK-801, but not (-)-MK-801, significantly enhanced reduced sucrose consumption 2 or 4 days after a single dose. However, no antianhedonia effects were detected 7 days after a single dose of either stereoisomer. Conclusions: Both stereoisomers of MK-801 induced rapid antidepressant effects in the social defeat stress model, although neither produced a long-lasting effect (7 days).[1] (+)-MK-801 is known to be a specific non-competitive antagonist of N-methyl-D-aspartate (NMDA) receptors. However, besides having an anticonvulsant effect, this compound possesses a central sympathomimetic effect and an anxiolytic-like action, raising the possibility that (+)-MK-801 might affect monoamine uptake systems. To elucidate this possibility, we investigated the effects of (+)-MK-801 on monoamine transporters expressed in HEK cells. (+)-MK-801 significantly inhibited the uptake of all three monoamine transporters in a dose-dependent manner and the inhibitions were competitive with respect to monoamines. The Ki values of (+)-MK-801 on the norepinephrine, dopamine and serotonin transporters were 3.2 microM, 40 microM and 43 microM, respectively. In addition, (-)-MK-801, a less potent antagonist of NMDA receptors, also inhibited monoamine transporters with a similar potency as that of (+)-MK-801. These results clearly indicate that MK-801, a non-competitive antagonist of NMDA receptors, competitively inhibits monoamine transporters without stereoselectivity.[2] In summary, our work shows for the first time that the same reactivation parameters and pharmacological agent (MK-801) that disrupted the reconsolidation of a cocaine-associated memory for a CPP task did not disrupt reconsolidation of the memory for a self-administration task. Further, reactivation parameters that mimicked the self-administration procedure itself, and therefore should have promoted robust retrieval of the cocaine-associated memory, also failed to render this memory labile for disruption by MK-801. The possibility of diminishing persistent and unwanted memories by disrupting the reconsolidation process opens exciting new frontiers for developing treatments for pathological disorders, including drug abuse. However, the complexity of memory storage and subsequent memory retrieval that ultimately may lead to memory recoding has only begun to be elucidated and therefore requires further systematic investigation with regard to the timing and the specific parameters used for reactivation.[5] Neuropathic pain is a chronic disease with hallmarks such as chronic allodynia and hyperalgesia. Previous studies have shown that the transforming growth factor-β superfamily acts as a protecting factor against neuropathic pain. In the current study, we found that growth and differentiation factor 10 (GDF10), which belongs to the transforming growth factor-β superfamily, is mainly expressed in the superficial layers of spinal dorsal horn neurons and it was dramatically downregulated after spinal nerve ligation and N-methyl-D-aspartate (NMDA) intrathecal infusion. Moreover, the decrease in GDF10 expression and increase in mechanical sensitivity could be blocked by MK-801, an antagonist of the NMDA receptor. These results suggest that the decreasing GDF10 may contribute toward neuropathic pain by facilitating NMDA receptor activation. Our findings shed new light on the understanding of the molecular mechanisms underlying neuropathic pain.[7] |
分子式 |
C20H19NO4
|
|
---|---|---|
分子量 |
337.37
|
|
精确质量 |
337.131
|
|
元素分析 |
C, 71.20; H, 5.68; N, 4.15; O, 18.97
|
|
CAS号 |
121917-57-5
|
|
相关CAS号 |
Dizocilpine maleate;77086-22-7;Dizocilpine;77086-21-6
|
|
PubChem CID |
16219612
|
|
外观&性状 |
Typically exists as White to off-white solids at room temperature
|
|
沸点 |
320.3ºC at 760 mmHg
|
|
闪点 |
152.6ºC
|
|
蒸汽压 |
0.000321mmHg at 25°C
|
|
LogP |
3.191
|
|
tPSA |
86.63
|
|
氢键供体(HBD)数目 |
3
|
|
氢键受体(HBA)数目 |
5
|
|
可旋转键数目(RBC) |
2
|
|
重原子数目 |
25
|
|
分子复杂度/Complexity |
432
|
|
定义原子立体中心数目 |
2
|
|
SMILES |
C[C@@]1(N2)C3=CC=CC=C3C[C@H]2C4=CC=CC=C14.O=C(O)/C=C\C(O)=O
|
|
InChi Key |
QLTXKCWMEZIHBJ-FWHYOZOBSA-N
|
|
InChi Code |
InChI=1S/C16H15N.C4H4O4/c1-16-13-8-4-2-6-11(13)10-15(17-16)12-7-3-5-9-14(12)16;5-3(6)1-2-4(7)8/h2-9,15,17H,10H2,1H3;1-2H,(H,5,6)(H,7,8)/b;2-1-/t15-,16+;/m0./s1
|
|
化学名 |
(Z)-but-2-enedioic acid;(1R,9S)-1-methyl-16-azatetracyclo[7.6.1.02,7.010,15]hexadeca-2,4,6,10,12,14-hexaene
|
|
别名 |
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。 |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (7.41 mM) (饱和度未知) in 10% EtOH + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL 澄清 EtOH 储备液加入到400 μL PEG300中,混匀;再向上述溶液中加入50 μL Tween-80,混匀;然后加入450 μL 生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (7.41 mM) (饱和度未知) in 10% EtOH + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清乙醇储备液加入 900 μL 20% SBE-β-CD 生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (7.41 mM) (饱和度未知) in 10% EtOH + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 配方 4 中的溶解度: ≥ 2.08 mg/mL (6.17 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清的DMSO储备液加入400 μL PEG300中,混匀;再向上述溶液中加入50 μL Tween-80,混匀;然后加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 5 中的溶解度: ≥ 2.08 mg/mL (6.17 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将100μL 20.8mg/mL澄清的DMSO储备液加入到900μL 20%SBE-β-CD生理盐水中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 配方 6 中的溶解度: ≥ 2.08 mg/mL (6.17 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。 配方 7 中的溶解度: 30% PEG400+0.5% Tween80+5% propylene glycol:15 mg/mL 配方 8 中的溶解度: 4.55 mg/mL (13.49 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶 (<60°C). 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.9641 mL | 14.8205 mL | 29.6410 mL | |
5 mM | 0.5928 mL | 2.9641 mL | 5.9282 mL | |
10 mM | 0.2964 mL | 1.4821 mL | 2.9641 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
![]() |
---|
![]() |
![]() |